Hemicarceplexes Modify the Solubility and Reduction Potentials of C_{60}

Tzu-Huan Wong,[†] Jia-Cheng Chang,[†] Chien-Chen Lai,^{‡,§} Yi-Hung Liu,[†] Shie-Ming Peng,[†] and Sheng-Hsien Chiu^{*,†}

[†]Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C.

[‡]Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, R.O.C.

[§]Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan, R.O.C.

Supporting Information

ABSTRACT: A highly stable C_{60} -incarcerated hemicarceplex, which retains its molecular integrity after heating at 523 K in air for at least 3 h, significantly increases the solubility of C_{60} in nonpolar solvents and increases the reduction potentials of the entrapped fullerene. Modification with $[(\eta^5-C_5Me_5)Ru^{II}]^+$ dramatically increases the solubility of this hemicarceplex in polar, protic solvents (e.g., MeOH).

INTRODUCTION

Because of their versatile configurations and attractive properties, spherical and spheroidal fullerenes have found widespread applications in many fields, including materials science, chemistry, and biology.1 Nevertheless, the limited solubility of fullerenes in common organic solvents remains bothersome, complicating their supply and chemical modification. One possible strategy to increase the solubility of fullerenes in organic solvents without disrupting their novel π -conjugated aromatic systems is to use macrocyclic hosts as phase-transfer agents, forming corresponding host/guest complexes.² In the past two decades, several macrocyclic hosts-prepared from cyclodextrins,³ porphyrins,⁴ cyclotriveratrylenes (CTVs),⁵ and others⁶—have been employed to complex the highly symmetrical and spherical fullerene C₆₀, thereby increasing its solubility in various solvents and facilitating its purification and chemical modification. Because C₆₀ and its heteroatom-doped analogues C59N and C59B are valuable materials for the construction of molecular electronics (e.g., molecular junctions and rectifiers),⁷ having them available in the form of moresoluble host/guest complexes might facilitate the fabrication of such devices and, in theory, allow tuning of the redox potentials of the complexed fullerenes and/or stabilization of the reduced species through the presence of the protective host shell. Most fullerene host/guest complexes prepared to date have, however, lacked sufficient stability for practical use, complicating their isolation, characterization, and operation.

A hemicarceplex is a room temperature-isolatable host/guest complex that can release its sequestrated guest(s) at elevated temperature.⁸ Previously, we demonstrated that the CTV-based molecular cage 1 (Figure 1) can form a hemicarceplex with C_{70} , selectively over C_{60} , thereby allowing the direct isolation of C_{70} in high purity from crude fullerene extracts.⁹ We suspected that such supramolecular fullerene complexes might have potential

for further modification into highly stable hemicarce plexes if we were to decrease the sizes of the host openings, thereby elevating the temperature required to release their guest fullerenes. Herein, we report the synthesis of a highly stable C_{60} -incarce rated hemicarce plex, the significant increase in the reductive potentials of its entrapped C_{60} unit, and the improved solubility of this hemicarce plex in polar, protic solvents (e.g., MeOH) after modifying its host component with $[(\eta^{5}-C_{5}\mathrm{Me}_{5})\mathrm{Ru}^{II}]^{+}.$

RESULTS AND DISCUSSION

Previously, we reported that C₆₀ can freely enter and exit the cavity of the molecular cage 1 comprising two CTV units linked by six dodecamethylene units, but not the smaller molecular cage 2 featuring six decamethylene units, in CDCl₂CDCl₂ at 323 K.⁹ We suspected that the formation of the hemicarceplex C_{60} @2 would also be a thermodynamically favorable process, but it would be hampered by the high activation energy required for C₆₀ to pass through the openings and enter into the internal cavity of the molecular cage 2, thereby making the complexation event extremely slow under the applied conditions. According to the principle of microscopic reversibility, if the squeezing of a C₆₀ unit through the openings of the molecular cage 2 could be achieved, the resulting hemicarceplex $C_{60} @ 2$ should be an extremely stable complex-as desired-because its dissociation would require an even higher activation energy. When we heated a CDCl₂CDCl₂ solution containing the molecular cage 2 and an excess of C₆₀ at 373 K for 30 days, however, we did not observe any signals belonging to the corresponding hemicarceplex when monitoring using ¹H NMR spectroscopy. The

Received: February 20, 2014 Published: March 25, 2014

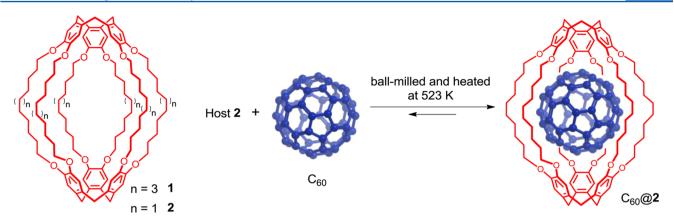


Figure 1. Chemical structures of the molecular cages 1 and 2 and the formation of the highly stable hemicarceplex $C_{60}@2$.

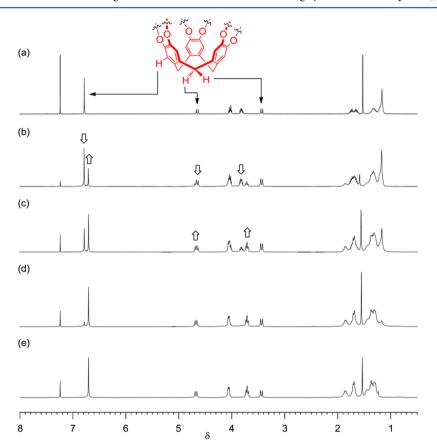


Figure 2. ¹H NMR spectra (400 MHz, 298 K, $CDCl_2CDCl_2$) of (a) the molecular cage 2; (b–d) the crude mixtures obtained after heating a mixture of C_{60} and 2 at 523 K for (b) 3, (c) 9, and (d) 15 h; and (e) the purified hemicarceptex C_{60} @2.

relatively low boiling points of common organic solvents and the low solubility of C_{60} in them presumably resulted in slow kinetics of complexation by limiting the amount of available applied thermal energy and the molar concentration of C_{60} , respectively.

To avoid these problems, we turned our attention to solventfree reactions.¹⁰ Thus, we first ball-milled (ground) a mixture of C_{60} and the molecular cage 2 (2.15:1) for 30 min and then heated the solid mixture under vacuum at 523 K for 15 h. The ¹H NMR spectrum of the crude product (Figure 2) displayed a weak set of signals for the original free molecular cage 2 and a new, predominant set featuring upfield shifts of the signals for the aromatic protons (δ 6.70) of the CTV units in the molecular cage 2 and its oxygen atom-adjacent methylene protons (δ 3.67–3.75), suggesting the formation of the hemicarceplex C₆₀@**2** because these particular protons would presumably be shielded by the incarcerated C₆₀ unit. Gratifyingly, chromatographic purification afforded the desired hemicarceplex C₆₀@**2** in 38% yield.¹¹ The signals for most of the aromatic nuclei of the molecular cage **2** in the ¹³C NMR spectrum of the hemicarceplex C₆₀@**2** in CDCl₃ (Figure 3, spectrum b) were shifted slightly upfield relative to those of the free host (Figure 3, spectrum a), again suggesting shielding induced by the encapsulated C₆₀ unit. Because the solubility of uncomplexed C₆₀ in CDCl₃ is low, we used a mixture of CDCl₃ and CS₂ (9:1) to compare the ¹³C NMR spectrum of C₆₀ with that of the hemicarceplex C₆₀@**2**. The presence of a single signal shifted slightly upfield for the incarcerated C₆₀ suggested

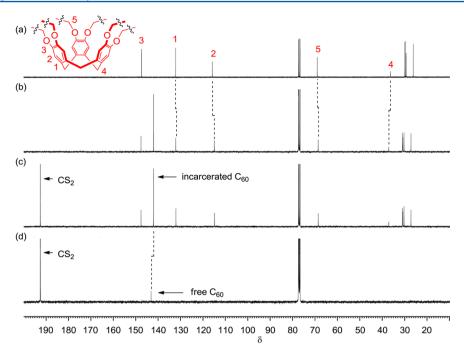
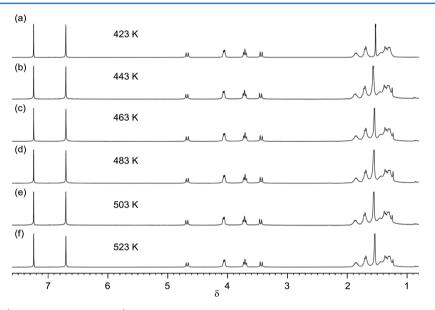
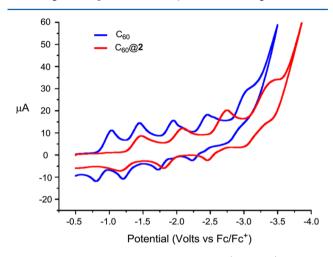


Figure 3. ¹³C NMR spectra (100 MHz, 298 K) of (a) the molecular cage 2 and (b) the hemicarceplex C_{60} @2 in CDCl₃ and of (c) the hemicarceplex C_{60} @2 and (d) free C_{60} in CDCl₃/CS₂ (9:1).



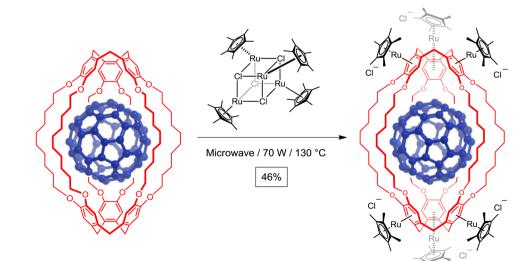

Figure 4. ¹H NMR spectra (400 MHz, CDCl₃, 298 K) recorded after heating the solid hemicarceplex C_{60} @2 in air at a constant temperature for 3 h at intervals of 20 K from 423 to 523 K.

shielding of the spherical guest component by the CTV units of the molecular cage **2** as well as rapid rotation kinetics of the C_{60} unit within the host component under these conditions (Figure 3, spectra c and d). In previous studies, the complexation of CTV and C_{60} has been observed primarily in the solid state, rather than in solution, except when π -electron-rich substituents have been attached to the catechol rings to enlarge the cavity and the area of the π cloud available for guest contact;¹² therefore, we suspect that less-than-perfect structural complementarity exists between the CTV units of the molecular cage **2** and the spherical C_{60} guest component, leading to the relatively minor shifts of their aromatic signals in the ¹³C NMR spectrum. Electrospray ionization (ESI) mass spectrometry revealed an intense peak at m/z 2281.1, matching the ion $[C_{60}@2]^+$ and supporting the successful synthesis and isolation of the hemicarceplex $C_{60}@2$.

In a previous study, we isolated high-purity C_{70} by heating the hemicarceplex C_{70} @1 in d_8 -toluene at 313 K for several hours.⁹ The stability of our new hemicarceplex C_{60} @2 is much greater than that of C_{70} @1; indeed, we did not observe any signals for the free molecular cage 2 in the ¹H NMR spectrum recorded after heating C_{60} @2 in d_8 -toluene (1.5 mM) at 353 K for at least 30 days. In device settings, we suspect that the hemicarceplex C_{60} @2 might be subjected to heating in the absence of any surrounding solvent molecules; therefore, we heated C_{60} @2 open to the air at 423 K for 3 h and then dissolved the sample in CDCl₃ and used ¹H NMR spectroscopy to check for any signals belonging to the free molecular cage 2.

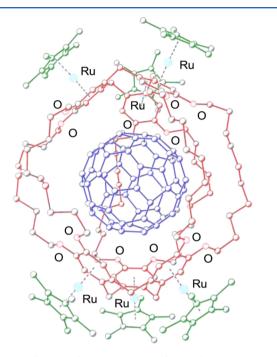
Gratifyingly, the ¹H NMR spectrum of the resulting solid displayed only one set of signals belonging to C_{60} (@2, indicating that this hemicarceplex is sufficiently stable to retain its molecular integrity under these conditions. We then heated the solid for 3 h at intervals of 20 K from 423 to 523 K (Figure 4), but again observed no dissociation of the hemicarceplex, confirming that C_{60} (@2 is an extremely stable complex and that the release of its incarcerated C_{60} unit should not occur under normal material or device operational conditions.

Because C_{60} is used frequently as an electron-receiving material, we wished to compare its reduction potentials when incarcerated within the molecular cage 2 with those in its free state. Figure 5 presents the cyclic voltammogram of the


Figure 5. Cyclic voltammograms of C_{60} (0.5 mM) and the hemicarceplex $C_{60}@2$ (0.5 mM) in toluene/CH₃CN (5:1). Supporting electrolyte: Bu₄PF₆ (0.1 M); scan rate: 300 mV s⁻¹.

hemicarceplex C_{60} @2 in toluene/CH₃CN (5:1, 0.5 mM). We observe four consecutive cathodic steps at peak potentials of -1.48, -2.10, -2.75, and -3.45 V, respectively, versus Fc/Fc⁺; they are all more negative—by approximately 0.44, 0.65, 0.80, and 0.99 V, respectively—than the first four reduction potentials measured for free C₆₀ under the same conditions.¹³ This result suggests the existence of stabilizing interactions

Scheme 1. Synthesis of the Complex $C_{60}@[3]Cl_6$


between the two electron-rich CTV caps of the molecular cage 2 and the electron-deficient C_{60} component in the hemicarceplex $C_{60} @ 2$, such that the presence of the host inhibits reduction of the encapsulated spherical guest. The phenomenon of greater differences in the reduction potentials upon increasing the number of electrons injected into the incarcerated C₆₀ unit is consistent with negatively charged entrapped guests interacting unfavorably with the electron-rich CTV units of the molecular cage 2. The absence of any notable signals belonging to the free molecular cage 2 in the ¹H NMR spectrum of the solid obtained upon concentrating the solution from the cell after performing cyclic voltammetry over 20 potential sweeps from -0.3 to -3.5 V at a rate of 100 mV s⁻¹ suggested that, even when the reduced forms of C₆₀ were repelled electronically by the molecular cage 2, the hemicarceplex C60@2 did not dissociate to any significant degree during any stage of the electrochemical reduction process. Therefore, the very high energy barrier for C₆₀ entering the internal cavity of the molecular cage 2-requiring a temperature of 523 K to proceed-also inhibited the dissociation of the reduced C_{60} guest species from the hemicarceplex C_{60} @2. Taken together, our results confirm that $C_{60}@2$ is a highly stable material capable of tolerating the high temperatures and redox conditions that it might encounter during the operation of a device.

Although the hemicarceplex $C_{60}@2$ is highly soluble in lesspolar solvents (e.g., CHCl₃, CH₂Cl₂, toluene), its solubility in more-polar solvents (e.g., CH₃CN, MeOH, water) remains limited. To enhance the solubility of $C_{60}@2$ in polar solvents, without modifying the structure of $C_{60}@2$ in polar solvents, imited. To enhance the solubility of $C_{60}@2$ in polar solvents, without modifying the structure of C_{60} , we coordinated cationic $[(\eta^5-C_5Me_5)Ru^{II}]^+$ moieties¹⁴ to the aromatic rings of the CTV units of the hemicarceplex; this approach has been applied previously to generate a water-soluble cryptophane host for further trapping of Xe atoms.¹⁵ Although the harsh reaction conditions (microwave heating at 403 K for 2 h) would not be tolerated by most host/guest complexes (i.e., they would dissociate into their individual components), the highly stable hemicarceplex $C_{60}@2$ allowed the synthesis of the desired complex $C_{60}@[3]Cl_6$, which we isolated in reasonable yield (46%) after column chromatography (Scheme 1). Although, gratifyingly, the complex $C_{60}@[3]Cl_6$ is soluble in MeOH,

EtOH, and their aqueous blends, it is not soluble in pure water, presumably because the equatorial regions of the hemicarceplex $C_{60}@2$ remain too hydrophobic.

We grew single crystals suitable for X-ray crystallography through liquid diffusion of hexane into a CH_2Cl_2 solution of the complex $C_{60}@[3]Cl_6$. The solid-state structure of $C_{60}@[3]^{6+}$ reveals¹⁶ (Figure 6) a geometry in which the spherical C_{60} component is located within the cavity of the molecular cage 3.

Figure 6. Ball-and-stick representation of the solid-state structure of the complex $C_{60}@[3]^{6+}$.

We have synthesized C_{60} @2, a highly stable C_{60} -incarcerated hemicarceplex that maintains its molecular integrity-that is, it does not release its guest moiety-even when heated as a solid at 523 K for at least 3 h in air. The first four reduction potentials of the entrapped C₆₀ unit of this hemicarceplex are more negative, relative to those of free C_{60} , by 0.45–0.99 V. Attaching six $[(\eta^5 - C_5 Me_5)Ru^{II}]^+$ units to the two CTV caps of the hemicarceplex $C_{60}@2$ forms a new complex, $C_{60}@[3]Cl_{6}$ that is soluble in MeOH, EtOH, and their aqueous blends. Therefore, this pair of hemicarceplexes allows the spherical fullerene C₆₀ to be dissolved in solvents over a wide range of polarities for various applications. The increased solubility and more-negative reduction potentials of C₆₀ when incarcerated within these CTV-based molecular cages suggest that these highly stable hemicarceplexes could be applied as new types of fullerene derivatives for studies in both materials science and molecular electronics. We are currently investigating the applications of $C_{60}@2$ and $C_{60}@[3]Cl_6$ as well as synthesizing other highly stable hemicarceplexes incorporating higher fullerenes.

EXPERIMENTAL SECTION

General. All glassware, stirrer bars, syringes, and needles were either oven- or flame-dried prior to use. All reagents, unless otherwise indicated, were obtained from commercial sources. Column chromatography was performed on silica gel (70-230 mesh) or LiChroprep RP-18 (40-61 μ m). Melting points are uncorrected. For NMR spectroscopy, the deuterated solvent was used as the lock and the solvent's residual proton(s) or TMS was employed as the internal standard. Chemical shifts are reported in parts per million (ppm). Multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), or br (broad). High-resolution electrospray ionization mass spectra were recorded using a time-of-flight (TOF) mass analyzer. Microwave irradiation of sealed reaction vessels was performed in a CEM-Discover Labmate microwave oven; the temperatures were recorded using an external infrared sensor. Ballmilling was performed using a swing-mill, containing two 5 mL stainless-steel cells and two stainless-steel balls (diameter: 7 mm); the mill was operated at a 20 Hz frequency at room temperature.

Hemicarceplex C_{60} @2. A solid mixture of the molecular cage 2 (40 mg, 26 μ mol) and C_{60} (40 mg, 56 μ mol) was ball-milled at room temperature for 30 min, and then the resulting solid was washed into a round-bottom flask with CHCl₃ (20 mL). After evaporating the organic solvent under reduced pressure, the solid residue was heated under vacuum at 523 K for 15 h. The resulting solid was purified chromatographically (SiO₂; CS₂ then CH₂Cl₂/hexane, 4:1) to afford a brown solid (22 mg, 38%). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃, 298 K) δ = 1.20–1.50 (m, 60H), 1.60–1.79 (m, 24H), 1.80–1.91 (m, 12H), 3.44 (d, *J* = 13.6 Hz, 6H), 3.66–3.75 (m, 12H), 4.05–4.07 (m, 12H), 4.68 (d, *J* = 13.6 Hz, 6H), 6.70 (s, 12H); ¹³C NMR (100 MHz, CDCl₃, 298 K) δ = 27.2, 30.2, 30.8, 30.9, 37.1, 68.6, 114.9, 132.1, 142.0, 147.7; HR-MS (ESI) calcd for C₁₆₂H₁₄₄O₁₂⁺ [M]⁺, *m/z* 2281.0658; found, *m/z* 2281.0689.

C₆₀@[**3**]**C**I₆. [Cp*Ru(μ_3 -Cl)]₄ (63 mg, 79 μ mol) and degassed water (4 mL) were added to a suspension of the hemicarceplex C₆₀@**2** (60 mg, 26 μ mol) in THF (2 mL) in a 10 mL microwave reaction vessel, which was then sealed and heated at 130 °C under microwave irradiation for 2 h. The resulting red solution was concentrated, and the solid residue was purified (RP-C18; H₂O/MeOH, 3:7) to afford a brown solid (47 mg, 46%). mp > 300 °C; ¹H NMR (400 MHz, CD₃OD, 298 K) δ = 1.31–2.02 (m, 96H), 2.03 (s, 90H), 3.44 (d, *J* = 14 Hz, 6H), 3.70 (d, *J* = 14 Hz, 6H), 3.80–3.90 (m, 12H), 4.20–4.23 (m, 12H), 7.11 (s, 12H); ¹³C NMR (100 MHz, CD₃OD, 298 K) δ = 11.0, 29.3, 31.3, 31.7, 32.3, 32.7, 73.2, 77.3, 96.2, 96.7, 125.3, 143.9; HR-MS (ESI) calcd for C₂₂₂H₂₃₄O₁₂Ru₆Cl₄ {C₆₀@[**3**]Cl₄}¹²⁺, *m/z* 1921.5403, found *m/z* 1921.5455; C₂₂₂H₂₃₄O₁₂Ru₆Cl₃ {C₆₀@[**3**]Cl₃}³⁺, *m/z* 1269.3708, found *m/z* 1269.3661; C₂₂₂H₂₃₄O₁₂Ru₆Cl₂ {C₆₀@[**3**]Cl₂}⁴⁺, *m/z* 943.2861, found *m/z* 943.2808.

Electrochemistry. CV was performed to determine the redox potentials of C_{60} and the hemicarceplex $C_{60} @ 2$ (5×10^{-4} M) (Table 1). The electrochemical instrumentation used consisted of a commercially available electrochemical analyzer and a conventional personal computer. A conventional three-electrode configuration was used, with a Pt disk (0.07 cm²) as the working electrode, a platinum counter electrode, and Ag/AgCl as the reference electrode. The reference electrode was calibrated using Fc/Fc⁺ before and after the experiments. Tetra-*n*-butylammonium hexafluorophosphate (TBAPF₆, 0.1 M) was the supporting electrolyte. The measurements were performed for samples in anhydrous solvents under Ar; all samples were deoxygenated with Ar prior to measurement.

Table 1. Redox Potentials (V vs Fc/Fc⁺) of C₆₀ and C₆₀@2, Determined Using Cyclic Voltammetry^{*a*,*b*}

compound	E^{1}_{re}	$E^2_{\rm re}$	$E^3_{\rm re}$	$E_{\rm re}^4$	$E_{\rm re}^5$	E^{1}_{ox}	E^2_{ox}	E^3_{ox}	E^4_{ox}	E^{5}_{ox}
C ₆₀	-1.04	-1.45	-1.95	-2.46	-3.01	-2.74	-2.23	-1.73	-1.20	-0.80
C ₆₀ @2	-1.48	-2.10	-2.75	-3.45		-3.04	-2.46	-1.81	-1.15	

 ${}^{a}E_{re}^{n}$: nth reduction peak potential of the neutral compound. ${}^{b}E_{rox}^{n}$: nth oxidation peak potential of the highest reduced species.

ASSOCIATED CONTENT

S Supporting Information

¹H and ¹³C NMR spectra of the hemicarceplexes and Crystal Information File (CIF) of $C_{60}@[3]Cl_6$. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: shchiu@ntu.edu.tw.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was supported by the National Science Council of Taiwan (NSC-102-2119-M-002-007) and National Taiwan University (NTU-102-R890913).

REFERENCES

(1) (a) Hirsch, A.; Brettreich, M. Fullerenes: Chemistry and Reactions; Wiley-VCH: Weinheim, 2005. (b) Langa, F., Nierengarten, J.-F., Eds. Fullerenes: Principles and Applications; Royal Society of Chemistry: Cambridge, U.K., 2007.

(2) Martin, N.; Nierengarten, J.-F. Supramolecular Chemistry of Fullerenes and Carbon Nanotubes; Wiley-VCH: Weinheim, 2012.

(3) (a) Andersson, T.; Nilsson, K.; Sundahl, M.; Westman, G.; Wennerstrom, O. J. Chem. Soc., Chem. Commun. 1992, 604.
(b) Masuhara, A.; Fujitsuka, M.; Ito, O. Bull. Chem. Soc. Jpn. 2000, 73, 2199.

(4) (a) Sato, H.; Tashiro, K.; Shinmori, H.; Osuka, A.; Murata, Y.; Komatsu, K.; Aida, T. J. Am. Chem. Soc. 2005, 127, 13086.
(b) Hosseini, A.; Taylor, S.; Accorsi, G.; Armaroli, N.; Reed, C. A.; Boyd, P. D. W. J. Am. Chem. Soc. 2006, 128, 15903. (c) Giguere, J.-B.; Morin, J.-F. Org. Biomol. Chem. 2012, 10, 1047.

(5) (a) Steed, J. W.; Junk, P. C.; Atwood, J. L.; Barnes, M. J.; Raston, C. L.; Burkhalter, R. S. *J. Am. Chem. Soc.* **1994**, *116*, 10346. (b) Felder, D.; Heinrich, B.; Guillon, D.; Nicoud, J.-F.; Nierengarten, J.-F. *Chem.—Eur. J.* **2000**, *6*, 3501. (c) Huerta, E.; Isla, H.; Perez, E. M.; Bo, C.; Martin, N.; de Mendoza, J. *J. Am. Chem. Soc.* **2010**, *132*, 5351.

(6) (a) Araki, K.; Akao, K.; Ikeda, A.; Suzuki, T.; Shinkai, S. *Tetrahedron Lett.* **1996**, *37*, 73. (b) Kawase, T.; Fujiwara, N.; Tsutumi, M.; Oda, M.; Maeda, Y.; Wakahara, T.; Akasaka, T. *Angew. Chem., Int. Ed.* **2004**, *43*, 5060. (c) Kishi, N.; Li, Z.; Yoza, K.; Akita, M.; Yoshizawa, M. J. Am. Chem. Soc. **2011**, *133*, 11438. (d) Iwamoto, T.; Watanabe, Y.; Sadahiro, T.; Haino, T.; Yamago, S. *Angew. Chem., Int. Ed.* **2011**, *50*, 8342.

(7) (a) Zhao, J.; Zeng, C.; Cheng, X.; Wang, K.; Wang, G.; Yang, J.; Hou, J. G.; Zhu, Q. *Phys. Rev. Lett.* **2005**, 95, 045502. (b) Zhang, X.-J.; Long, M.-Q.; Chen, K.-Q.; Shuai, Z.; Wan, Q.; Zou, B. S.; Zhang, Y. *Appl. Phys. Lett.* **2009**, *94*, 073503.

(8) (a) Yoon, J.; Sheu, C.; Houk, K. N.; Knobler, C. B.; Cram, D. J. J. Org. Chem. 1996, 61, 9323. (b) Jasat, A.; Sherman, J. C. Chem. Rev. 1999, 99, 931. (c) Rue, N. M.; Sun, J.; Warmuth, R. Israel J. Chem. 2011, 51, 743.

(9) Li, M.-J.; Huang, C.-H.; Lai, C.-C.; Chiu, S.-H. Org. Lett. 2012, 14, 6146.

(10) (a) Tanaka, K., Ed. Solvent Free Organic Synthesis; Wiley-VCH: Weinheim, 2004. (b) Komatsu, K. Top. Curr. Chem. 2005, 254, 185.

(11) We isolated the hemicarceplex C_{60} @2 in 16% yield after ballmilling a solid mixture of C_{60} and the host 2 (2.15:1) at a frequency of 20 Hz for 12 h.

(12) For a recent review, see: Hardie, M. J. Chem. Soc. Rev. 2010, 39, 516.

(13) (a) Xie, Q.; Perez-Cordero, E.; Echegoyen, L. J. Am. Chem. Soc. 1992, 114, 3978. (b) Chen, Z.; Fox, J. M.; Gale, P. A.; Pilgrim, A. J.; Beer, P. D.; Rosseinsky, M. J. J. Electroanal. Chem. 1995, 392, 101.

(14) Fairchild, R. M.; Holman, K. T. Organometallics 2007, 26, 3049.

(15) Fairchild, R. M.; Joseph, A. I.; Holman, K. T.; Fogarty, H. A.; Brotin, T.; Dutasta, J.-P.; Boutin, C.; Huber, G.; Berthault, P. J. Am. Chem. Soc. **2010**, 132, 15505.

(16) Crystal data for $C_{60}@[3]Cl_6$: $[C_{222}H_{234}O_{12}Ru_6 \cdot 6Cl]$; $M_r = 3913.21$; monoclinic; space group C2/c; a = 24.3252(4) Å; b = 37.1919(9) Å; c = 24.5257(5) Å; V = 22058.7(8) Å³; $\rho_{calcd} = 1.178$ g cm⁻³; μ (Mo K α) = 0.526 mm⁻¹; T = 100(2) K; brown cubic; 24 797 independent measured reflections; F^2 refinement; $R_1 = 0.087$; $wR_2 = 0.247$. The program PLATON/SQUEEZE was applied to account for the residual electron density. CCDC-978460 contains the supplementary crystallographic data for this study. Spek, A. L. *PLATON/SQUEEZE*; Utrecht University: Utrecht, The Netherlands.